The heat equation on a compact Lie group

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lie group actions on compact

Let G be a homotopically trivial and effective compact Lie group action on a compact manifold N of nonpositive curvature. Under certain assumptions on N we prove that if G has dimension equal to rank of Center π1(N), then G must be connected. Furthermore, if on N there exists a point having negative definite Ricci tensor, then we show that G is the trivial group.

متن کامل

Desingularizing Compact Lie Group Actions

This note surveys the well-known structure of G-manifolds and summarizes parts of two papers that have not yet appeared: [4], joint with J. Brüning and F. W. Kamber, and [8], joint with I. Prokhorenkov. In particular, from a given manifold on which a compact Lie group acts smoothly, we construct a sequence of manifolds on which the same Lie group acts, but with fewer levels of singular strata. ...

متن کامل

the structure of lie derivations on c*-algebras

نشان می دهیم که هر اشتقاق لی روی یک c^*-جبر به شکل استاندارد است، یعنی می تواند به طور یکتا به مجموع یک اشتقاق لی و یک اثر مرکز مقدار تجزیه شود. کلمات کلیدی: اشتقاق، اشتقاق لی، c^*-جبر.

15 صفحه اول

On Compact Symplectic Manifolds with Lie Group Symmetries

In this note we give a structure theorem for a finite-dimensional subgroup of the automorphism group of a compact symplectic manifold. An application of this result is a simpler and more transparent proof of the classification of compact homogeneous spaces with invariant symplectic structures. We also give another proof of the classification from the general theory of compact homogeneous spaces...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 1978

ISSN: 0002-9947

DOI: 10.1090/s0002-9947-1978-0515542-0